
iasa journal no 50 – August 2019
53

Microservices in Audiovisual Archives: An Exploration of Constructing
Microservices for Processing Archival Audiovisual Information
Annie Schweikert, New York University, USA
Dave Rice, City University of New York, USA
DOI: https://doi.org/10.35320/ij.v0i50.70

Abstract

Properly managing audiovisual archival material requires identifying, using, and possibly
creating the right tools and workflows to facilitate archival objectives. In creating these
workflows, two models are possible. One model is the monolithic architecture, which
includes complex all-in-one systems (for instance, a comprehensive digital asset manage-
ment system). Another model is the microservice architecture, which combines independ-
ent tools into a loosely coupled system based upon common underlying standards and
understandings. In a microservice architecture, an individual tool may be added, replaced,
or upgraded independently of the other tools.

This document describes and examines strategies for designing lightweight microservice
environments for the processing of digital, file-based, audiovisual data within an archive. It
guides the reader through the design of a simple example microservice architecture by es-
tablishing foundational archival frameworks for microservice design, describing examples
of packages and microservices tailored to audiovisual archives, and finally demonstrating
an end-to-end workflow.

This document does not intend to be a standard for the design of audiovisual micros-
ervices, but seeks to contribute a use case to the work and dialogue of many audio-
visual archives exploring and implementing microservice structures; see in particularly
the compiled, collaborative documentation at https://github.com/amiaopensource/open-
workflows. This document presumes an overview understanding of the Reference Model
for an Open Archival Information System1 (OAIS). Since the document intends to focus on
archival routines for audiovisual content, an introduction to FFmpeg2 can also be helpful.

Microservices and Monoliths

Properly managing audiovisual archival material requires identifying, using, and possibly
creating the right tools and workflows to facilitate archival objectives. Such tools may
include various independent utilities that change based on the material; for analog video
media, this might include cleaning supplies, a video tape player, a time base corrector, or a
video card for digitization. Archives of analog media are generally rich with discrete tools
independently selected for their own focused objectives. These items may more or less be
selected independently and combined into a loosely coupled system, based upon common
underlying standards and understandings. An individual tool may be added, replaced, or
upgraded independently of the other tools.

Alternatively, a tool could be in the form of a complex all-in-one system, for instance
a comprehensive digital asset management system or an archival vendor that cares for
multiple aspects of a project. Archives of digital media, for which tasks can be more easily
automated, present the opportunity to integrate tools into a single centralized system.

1 https://public.ccsds.org/pubs/650x0m2.pdf
2 https://www.ffmpeg.org

ARTICLE

54
iasa journal no 50 – August 2019

This system can manage multiple tasks through a single application and provide a compre-
hensive, foundational environment for archival workflows. For example, a complex digital
asset management system may be able to facilitate cataloging, digitization, transcoding, and
access as a single, self-contained product, thereby clustering the objectives of several tools
into a singular, comprehensive system.

These descriptions illustrate the difference between microservice architectures and
monolithic architectures as applied to an audiovisual archive. Both styles have distinct
opportunities and challenges. A monolithic system, such as a complex digital asset manage-
ment application, may suggest reliability and efficiency, as control of each task is integrated
under a single company’s umbrella. However, if the monolith contains some strong func-
tions and some weak functions, it may be difficult to adapt the architecture to an archive’s
preferred workflow, or remix the monolith with other, preferred tools. The addition of a
plugin architecture or API may allow the application to integrate new objectives and roles,
but in such an application individual tools do not operate independently of the product.

In a microservice architecture, on the other hand, many tools that accomplish discrete,
bounded tasks—each task a “microservice”—are combined into archival workflows like
links in a chain. The customizability of such a workflow structure requires independent
knowledge of each tool and its functions, the field’s standards and best practices for each
task, and the ground-up construction of an archive’s workflows. Microservices may there-
fore necessitate a much more comprehensive understanding of all tools and objects involved,
and present greater risks to the archive if misunderstandings are integrated into the design.
Nonetheless, a microservice-based archival environment supported by the archive’s staff
and/or related communities may be easier to independently evolve over time, and may be
easier to steer or customize to the unique needs of its collections or its organization.

Both systems work to accomplish the objectives of an audiovisual archive: to preserve,
manage, and make accessible its archival materials. The customizability of a microservice
architecture should not imply that monolithic architectures are inherently less suited to
archival administration. Some of the reasons to favor popular monolithic architectures
include situations when an archive wants to use a tool that is known to be compatible and
comprehensive, or when the workflow defined by a monolithic architecture matches the
goals of the workflow defined locally by the archive. However, there are situations where
a microservice approach is favorable. Such situations may include:

■■ when the design of workflows is required to be agile and responsive to serve its tar-
get communities, whose evolving needs may demand continuous development, flex-
ible scaling, and a shortening of the time between software development and release;

■■ when the staff of the archive has or is willing to acquire comprehensive technical
knowledge of its objects, processes, and tools, and/or desires to work with a pro-
vider that empowers the archive to implement highly customized workflows based
on this technical knowledge;

■■ when different archival communities and institutions wish to pool resources in a
collaborative, open source approach to preservation workflows;

■■ optionally, when the responsibility for the function, maintenance, and design of
archival functions is appropriate to rest on the archive’s personnel rather than an
outsourced company;

■■ when the opportunity for a monolith is not worth the cost of a long-term invest-
ment, such as when the work is managed in a temporary state or the evolution of
technology is paced such that the archive must be prepared to examine and replace
its tools and components on an ongoing basis.

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
55

The administrator of the archive who works on a web of microservices, as opposed to
within the boundaries of a monolith, encounters unusual opportunities for creativity as
well as constraints. In his book Code 2.0, Lawrence Lessig offers a comparison between
the coded reality of Second Life and real-world legal systems. He describes how, in the
real world, it typically constitutes illegal nuisance and/or trespassing to fly an airplane at a
low height over someone’s private property, but airplanes are free to fly at a high height
over the same property. He describes how in Second Life any character may fly at a height
of more than 15 meters over someone else’s virtual land, but may only move in the space
from 0-15 meters over someone else’s land if enabled to do so by the landowner’s settings.
Lessig describes:

But notice the important difference. In real space, the law means you can be penalized
for violating the “high/low” rule. In Second Life, you simply can’t violate the 15-meter
rule. The rule is part of the code. The code controls how you are in Second Life. There
isn’t a choice about obeying the rule or not, any more than there’s a choice about obey-
ing gravity.

So code is law here. That code/law enforces its control directly. But obviously, this code
(like law) changes. The key is to recognize that this change in the code is (unlike the laws
of nature) crafted to reflect choices and values of the coders.3

The monolith may present a similar experience as Second Life, where the options and
opportunities may be bounded by what is in code that is uncontrolled by the archive; for
instance, the options allowed in a particular decision may be fixed within a drop-down
menu of an interface, or a yes/no dialogue box, and limit opportunity.

This document will describe and examine strategies for designing lightweight microservice
environments for the processing of digital, file-based, audiovisual data within an archive.
It presumes an overview understanding of the Reference Model for an Open Archival
Information System (OAIS). The document also makes references to programming archi-
val routines in command languages, but seeks to provide examples in pseudo-code rather
than favoring any particular computer language. Since the document intends to focus on
archival routines for audiovisual content, a basic introduction to FFmpeg may be helpful.

Though this document does not address cross-archives collaboration in detail, it is im-
portant to note that microservice-based archival designs are often more successful when
employing collaboration amongst archival communities and open source approaches. Many
examples of open, archival microservice documentation may be found at https://github.
com/amiaopensource/open-workflows. This document does not intend to purport to be a
standard for the design of audiovisual microservices, but seeks to contribute to and build
upon this successful dialogue and implementation across audiovisual archives.

1. Building Microservices with the Open Archival Information System
Reference Model

The Open Archival Information System (OAIS) reference model defines mandates, ob-
jectives, and methods for archives, and provides a clear set of guidance to the design
of both monolithic or microservices systems. The OAIS documentation also provides
a set of vocabulary for describing basic components and functions within an archive, as

3 Lessig, Lawrence. 2011. http://codev2.cc/download+remix/

Annie Schweikert & Dave Rice

56
iasa journal no 50 – August 2019

well as a structure that divides workflow between submission, dissemination, and archi-
val management. The workflows that bridge these states are referred to as Ingest, in
which a submission is moved into a state of archival management, and Access, in which
content is moved from archival management to dissemination. The content in its form
before ingest workflows, within archival management, and after access workflows is
called the Submission Information Package (SIP), Archival Information Package (AIP), and
Dissemination Information Package (DIP), respectively.

“Figure 4-1: OAIS Functional Entities.” From Consultative Committee for Space Data Systems,
Reference Model for an Open Archival Information System (OAIS), Recommended Practice,
CCSDS 650.0-M-2 (Magenta Book). Issue 2, June 2012.

An archive will likely conceive and define several forms of SIPs and DIPs for different
purposes. If an archive is too open or undefined in regards to the expectations of the SIP,
the Ingest process and subsequent archival management of the content may be harder to
automate as it becomes less clear what can be expected. Some archives may be able to
constrict submission into a single form, but often the diversity of incoming content and its
creators necessitates a short list of SIP definitions to accommodate different workflows.
Likewise, an archive may need to support multiple types of access, such as supporting ac-
cess to audiovisual content in the form of a web stream for the public or as a higher quality
file for production work.

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
57

1.1 SIP Definitions

Content Information4 arriving at or created within an archive for preservation may be
considered a Submission Information Package (SIP). In its analog equivalent, a SIP could
be something simple and self-contained such as a videotape with a handwritten label, or
it may be more complex, such as a collection of media objects accompanied by submis-
sion documentation. A digital SIP, by comparison, could arrive as a set of video files with
embedded metadata or as a chaotic collection spread across many hard drives. An archive
receives SIPs from submitters, who may be creators (such as producers in a broadcast
archive) or donors (common in cultural heritage organizations).

Requiring too little information or context to accompany a qualifying SIP could cause risks
or confusion in the ongoing management of the Content Information. On the other hand,
mandating too much information may bottleneck the Ingest process or burden submitters.
It is recommended that the structure, form, and minimal requirements of a SIP are defined
in collaboration between the archive and the submitters. There may be worthwhile rea-
sons to make controlled customizations to SIP definitions for different Ingest workflows.
Employing the concept of locally defined SIPs during the acquisition of content helps ar-
range content more precisely, so that the boundaries between one SIP and another is clari-
fied, so that more automation is feasible, and so that there may be a greater awareness of
the state or quality of the SIP.

In audiovisual archives the SIP is generally composed of audiovisual media (Content
Information) and supporting metadata (Preservation Description Information). For analog
formats, the media and metadata may be physically attached—for example, labels on a
videocassette—but metadata could exist as separate documents or even emails that pro-
vide information about the media. With some digital audiovisual collections, that metadata
may be wholly embedded within the file (such as EXIF or IPTC data for images, or ID3 tags
for audio), but it is more likely that archives will receive media with supplemental metadata
as separate forms or files when obtaining a SIP.

OAIS requires archives to establish a SIP Definition to clarify the requirements and rec-
ommendations for SIPs. For instance, an archive may require that certain paperwork or
a web-form must be completed for each SIP with pertinent data such as the identifiers,
title, description, and access rights. Archives may also mandate that the media contained
in a SIP adhere to a predefined list of formats that the archive is prepared to manage. The
SIP Definition should also distinguish the media (Content Information) from the support-
ing metadata (Preservation Description Information) in a manner that is unambiguous and
clear. Furthermore, the SIP Definition should establish the boundaries between one SIP
and another clearly, for example defining whether a directory containing a single collection
of multiple media files constitutes one SIP or a set of multiple SIPs.

4	 ‘Content	Information’	is	defined	by	the	OAIS	as	“A	set	of	information	that	is	the	original	target	of	preservation	or	
that includes part or all of that information.”

Annie Schweikert & Dave Rice

58
iasa journal no 50 – August 2019

A selection of recommendations for SIP Definitions that are useful in building Ingest work-
flows includes:

■■ Define what forms of media (whether analog or digital) are accepted
■■ Define what metadata types are required and recommended
■■ Define what form the metadata should be provided in, such as paperwork, xml, csv,

informal text)
■■ Define the structure for digital media delivery (e.g., whether files should be grouped

into directories to represent a form of organization or semantics)5

1.2 SIP + ? = AIP

Why can’t the SIP simply become the AIP?

The OAIS reference model states that the SIP alone is not well-prepared enough to be
considered for long-term storage, and is thus not suitable to automatically be consid-
ered as an AIP (Archival Information Package). The SIP is missing pertinent Preservation
Description Information, which consists of four categories of metadata (provenance, con-
text, reference, and fixity) and includes information such as checksums, identifiers, or
preservation action documentation. Many of these values must be generated during the
Ingest process. The Content Information of a SIP may also require some review or quality
control work to ensure that the data is as it should be, is not malformed, and is identified
correctly. The AIP should add what is needed for readiness for long-term storage and a
status of permanence. AIPs generally will require information for reference, provenance,
fixity checking, and access rights, even if this information was not part of the SIP.

For audiovisual materials, the AIP may also add specifics such as technical metadata reports
(such as those produced by FFmpeg or MediaInfo), frame checksums (such as produced
by `ffmpeg -i INPUT -f framemd5 -an OUTPUT.framemd5̀), and possibly deriva-
tives. Whereas non-audiovisual file formats may support quick generation of DIPs (such as
derivatives); audiovisual content is often very large and more time-consuming to process,
thus there is more of an incentive to generate DIPs in the process of generating the AIP.

1.3 DIP Definitions

Content Information being passed to the user is usually normalized and compressed from
the Content Information as submitted (i.e., the original content packaged within the SIP
and AIP). It is often packaged and delivered with the same metadata from the AIP.

The DIP is relatively simple; it can consist of as little as a derivative and a metadata file.
Considered within the frame of microservices, it is also simple to generate, as it requires
only a consistent access-level file and a pre-existing metadata file. However, it is worth
attention at the time of Ingest actions, as it is simple to generate derivatives from Content
Information files to have on hand for quick access if this task is performed within the chain
of Ingest microservices.

5	 An	example	of	Archivematica’s	definition	of	a	SIP	Structure	may	be	found	at	https://wiki.archivematica.org/
SIP_Structure.	Archivematica	will	be	discussed	in	greater	detail	below.

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
59

1.4 An OAIS-like Example: YouTube

To provide an example of the SIP to AIP transformation, let us consider YouTube. The
submission interface of YouTube offers a very controlled method for providing a SIP. Here
the SIP includes exactly one audiovisual file plus a controlled set of metadata including:

■■ Title
■■ Description
■■ Tags
■■ Privacy Status
■■ Category
■■ License

While the YouTube SIP may simply be a single media file (Content Information) and a
webform entry (similar to Preservation Description Information), YouTube generates and
gathers a substantial amount of additional information in order to prepare for long-term
storage, management, and access for the content. These additions may include:

■■ Automated captions
■■ User reviews
■■ Content flagging
■■ Several derivatives of various sizes and media formats
■■ Embed codes and short urls
■■ Assessment of audio watermarks
■■ View count and statistics on use
■■ Technical metadata

YouTube’s methods to convert their SIPs into “AIPs” add a significant amount of informa-
tion to the package in order to increase the functionality, accessibility, and reuse of the
material. However, the original Content Information is often transcoded to YouTube’s
standards, and the closest to Preservation Description Information that YouTube’s pack-
age comes is the Access Rights and Context implied by the video’s availability on YouTube.
Ultimately, this added information does not conform to the OAIS AIP specifications, and
YouTube’s packaging procedure comes closer to producing a DIP.

Annie Schweikert & Dave Rice

60
iasa journal no 50 – August 2019

1.5 An OAIS-like Example: Internet Archive

The Internet Archive (archive.org) manages a more flexible SIP definition than YouTube.
Here the submission process offers many more metadata options, including comprehen-
sive opportunities to provide customized metadata. Additionally, the archive can access
multiple files within a single SIP. The Internet Archive provides some transparency to its
techniques for processing a SIP into an AIP.

For example, let us consider this Internet Archive item as an AIP: https://archive.org/de-
tails/umatic_controlled_damage

■■ All contents (including both Content Information and Package Description
Information) may be found at https://archive.org/download/umatic_controlled_
damage

■■ The archive adds a manifest that documents checksums and file attributes for all
files: https://archive.org/download/umatic_controlled_damage/umatic_controlled_
damage_files.xml

■■ This document also lists whether a file was considered part of the original submis-
sion (source=”original”) or if it was created by an Internet Archive microservice
(source=”derivative”). The package also maintains an XML file that concentrates
all descriptive information for the package, found at: https://archive.org/download/
umatic_controlled_damage/umatic_controlled_damage_meta.xml

■■ The processing history of that AIP since the Ingest started can be found at https://
archive.org/history/umatic_controlled_damage. From this location, an archivist
may review the logs of each microservice applied to the package and perform a
comprehensive audit of all processing actions.

1.6 An OAIS Example: Archivematica
Finally, Archivematica is an example of a digital preservation system explicitly based on
the OAIS reference model. Archivematica offers a package of free and open-source tools
for digital preservation, including ingest, storage, and access to digital archival content.6
Archivematica’s SIP is highly structured, to the point where inclusion of certain files (such
as metadata files) trigger specific workflows (in this case, processing by the Archivematica
system).7 Documentation is clear and publicly available on the Archivematica Wiki.

The process of turning this SIP into an AIP is similarly highly structured and includes reor-
ganizing SIP content, generating metadata, and performing audits of the SIP and AIP. The
final version of the AIP is packaged in accordance with the Library of Congress Bagit speci-
fication; the “data” directory includes the original content, logs from the Archivematica
Ingest process, thumbnails for access, and a file with metadata. A full sample AIP structure
can be found at https://wiki.archivematica.org/AIP_structure.

6	 “What	is	Archivematica?,”	Archivematica documentation,	Artefactual	Systems	Inc.,	2019.	https://www.archivematica.
org/en/docs/archivematica-1.9/getting-started/overview/intro/#intro	

7	 “SIP	Structure,”	Archivematica development wiki,	Archivematica	contributors, 30 Mar. 2017. https://wiki.
archivematica.org/SIP_Structure

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
61

2. Expressing Package Definitions and Considering Storage

Because monolithic digital archiving systems manage most or all aspects of archival pack-
aging and storage, archivists are not always required or able to define the structure and
storage location of the AIP. These attributes may be defined behind-the-scenes or be
described in system documentation.

Without a monolith, it becomes more pertinent for the archive to define and describe its
Information Packages clearly in order to build microservices upon the expectations and
standardization that the package definitions can bring. In addition, the ability to standardize
Information Packages from the ground up also allows the archivist to craft standardized
microservices that hook neatly into the structure of the Information Package. Shaping an
Information Package according to the needs of the archive then empowers the archivist
to create workflows that similarly address the needs of the archive. By the end of such a
process, the archive can be powered by chains of microservices linked together, building
on each other and on the Information Packages they define.

2.1 Guide to Pseudo-Code

The OAIS reference model is a framework with a wide range of possible implementations,
not a prescriptive template. However, in order to describe relationships between pack-
ages and microservices in a practical way, this paper will provide the reader with concrete
examples of packages and microservices. Examples throughout the paper are drawn from
and based on the set of microservices in use in the archives of City University Television
(CUNY TV), the television station of the City University of New York.

For the sake of expressing package definitions through this document, the following pseu-
do-code system is proposed:

■■ By default names represent the path of a file of an Information Package.
■� Names ending in a ‘/’ represent a directory.

■■ Components of names wrapped in ‘{}’ (curly brackets) and preceded by a ‘$’ repre-
sent variables that would be conditional to each Information Package.

■■ Components of names followed by an ‘*’ (asterisk) indicates that the file is sepa-
rately stored from the rest of the Content Information.

■■ Names wrapping in ‘[]’ (square brackets) represent data that is not stored as a file,
such as a database record. The use of square brackets also indicates that the data is
separately stored from the rest of the Content Information.

■■ Names may be followed by the following flags that are wrapped in ‘()’ (parentheses)
and are comma-delimited.
■� 1: indicates that exactly one occurrence of the data is required
■� ?: indicates that zero or one occurrence of the data is required
■� +: indicates that more than one is allowed

Annie Schweikert & Dave Rice

62
iasa journal no 50 – August 2019

For instance, a SIP definition for a single file and an associated web-form record could be
expressed as:8

Submission Information Package Expression (Example 1)
${CONTENT} (1)
[web-form-record] (1)

If the received content is then received and arranged to create an Archival Information
Package which stored in a directory structure that arranges the data, the result may ap-
pear as follows:

Archival Information Package Expression (Example 2)
${PACKAGE-UUID}/content/${CONTENT} (1)
${PACKAGE-UUID}/metadata/web-form-record.txt (1)

A more complex Archival Information Package for video files may appear as follows:

Archival Information Package Expression (Example 3)
${PACKAGE-UUID}/content/${CONTENT} (+)
${PACKAGE-UUID}/metadata/web-form-record.txt (1)
${PACKAGE-UUID}/metadata/logs/ingest.txt (1)
${PACKAGE-UUID}/metadata/technical-metadata.txt (1)
${PACKAGE-UUID}/metadata/checksums.md5 (1)
${PACKAGE-UUID}/metadata/mets.xml (1)
[database record of descriptive metadata] (1)

Alternatively, in cases when the archive intends to store technical metadata and records
of preservation events in a database as opposed to a package, the same data could be
defined as:

Archival Information Package Expression (Example 4)
${CONTENT _ UUID} (+)
[web-form-record] (1)
[database event record of ingest process] (1)
[database object record of technical-metadata] (1)
[database object record of checksums] (1)
[database record of METS data] (1)
[database record of descriptive metadata] (1)

The Dissemination Information Package made at the same time as these AIPs might hold
derivatives, their logs, and descriptive metadata to guide the user.

Dissemination Information Package Expression (Example 5)
${PACKAGE-UUID}/derivatives/web/${CONTENT}.mp4 (+)
${PACKAGE-UUID}/derivatives/edit/${CONTENT}.mov (+)
${PACKAGE-UUID}/metadata/logs/make-web-derivative.txt (+)
${PACKAGE-UUID}/metadata/logs/make-edit-derivative.txt (+)
[database record of descriptive metadata] (1)

8	 The	names	used	here	are	provided	as	examples	and	not	necessarily	recommendations.

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
63

2.2 Separating Content Information and Preservation Description
Information

The AIP is a theoretical concept with many different implementations, none of which are
required to be wrapped up in a literal package; the examples above present methods of
separating Content Information from Preservation Description Information. Examples 3
and 4 describe identical content, just packaged differently. (A migration from example
3 to example 4 would comprise a lossless repackaging.) In Example 3, the package is
relatively self-contained, consisting of a directory structure with original content files and
supporting technical and administrative metadata (part of the Preservation Description
Information, which includes records of preservation actions taken). The descriptive meta-
data alone is stored in a separate database, constituting Descriptive Information. Example
4 expands on the separation of the AIP by moving the original content into preservation
storage, pre-created derivatives into a different storage system, and all metadata (descrip-
tive, administrative, and technical) into database records.

Separating content from metadata in storage can be a necessity for audiovisual collections,
due to relatively larger data storage and cost requirements. For instance, an archive may
determine that larger original content should be stored on lower cost LTO tapes, while
the derivatives remain in online storage because of its greater priority for access. This
scenario optimizes storage, but increases the need and potential risks involved in ensuring
that all links between the components of the AIP are well-maintained and understood.
For instance, the discovery of a descriptive metadata record for a package in a database
should inform as to the location and identity of the package that it describes. Similarly, the
package in storage should indicate and reference the related set of descriptive information.

In both examples 3 and 4, the descriptive metadata is stored in a separate database, which
allows the description to evolve over time as the archive learns more about the content,
changes description standards, or corrects information (in contrast to the content of the
Archival Information Package, which is considered a permanent set of data that is not to be
changed). With this separation, the AIP could be moved into offline storage, such as LTO
tape, as there is minimal or no reason for the archive to change the package.

2.3 Defining Expected Files

In the process of defining package definitions, an archive should also set standards for the
files they expect and create for preservation and access. If the archive specifies that all
video files for preservation should be wrapped in Matroska and encoded using FFV1 and
FLAC, the archive can verify that the files stored for long-term preservation or access
conform to these standards by writing a file format policy. For example, a file intended for
broadcast can be compared to a standard broadcast file definition, or policy,9 with tools
such as MediaConch.10 A file successfully validated against a policy is then shown to be
compliant with local standards.

9	 See	a	sample	broadcast	policy	at	https://github.com/mediamicroservices/mm/blob/master/makebroadcast_
policies.xml

10	 See	a	description	of	how	MediaConch	policy	implementation	works	at	https://mediaarea.net/MediaConch/
Documentation/HowToUse

Annie Schweikert & Dave Rice

64
iasa journal no 50 – August 2019

3. Microservices for Ingest

3.1 Roadmap for Ingest

Having clear documentation on how Information Packages can be stored or arranged is es-
sential for microservice development and the development of storage strategy. To deploy
each microservice, one will need to understand:

■■ If the input is indeed a Package,
■■ If the Package is malformed or valid,
■■ If the Package qualifies for the microservice called,
■■ If the microservices has already been applied to the Package or not,
■■ Where to find any information needed to initialize the microservice (context or

user-selected options), and
■■ Where to store resulting data and where to log resulting information.

Audiovisual archives can perform Ingest actions on their content either manually, or using
tools and libraries developed to address audiovisual media. Some of these tools include
`mediainfo` and `exiftool ,̀ which report values for embedded metadata; `mediaconch ,̀
which can report whether audiovisual files conform to predefined technical specifications,
among other functions; and `ffmpeg ,̀ a suite of libraries and programs that can perform a
wide range of tasks on audiovisual files (including ̀ ffprobe ,̀ the metadata reporting compo-
nent of FFmpeg). Tools that monitor fixity do not have to be specific to audiovisual media;
for example, `hashdeep̀ is a command line utility that can recursively generate checksum
reports from directories in order to produce a comprehensive manifest. The utility `bagit`
could also be considered to fulfill this role.

Following are a series of example microservices for Ingest.

3.2 Validating a Submission Information Package

Submission Information Package structures should be defined by the archive, and vali-
dated according to that definition. For an example, see `Submission Information Package
Expression (Example 1)̀ in this paper.

ValidateSubmissionPackage
As part of archival management, a validation process for packages must be created in
order to support any ongoing testing, auditing, or review of the status and health of the
packages created. Validating Submission Information Packages is the first step in ensuring a
successful preservation workflow, giving the archivist the ability to identify malformed or
incomplete submissions early.

Microservice Steps:

1. Receive Content Information (for example, a video file) and Preservation Description
Information (for example, a web form entry) through a submission form, command
line interaction, or other mechanism.

2. Verify that checksums are created and/or documented for all files that need them.
a. If checksums are not created, generate checksums using `MakeChecksums̀ (de-

tailed in next section).
3. If the SIP structure is validated according to local definitions, conditionally pass the

SIP straight into technical metadata generation (in next section).

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
65

3.3 Generating Preservation Description Information

These microservices generate or report metadata that are expected in the Preservation
Description Information section of the AIP.

MakeChecksums
This microservice generates checksums. It is most obviously applicable to Content
Information, which must be monitored for fixity throughout its preservation life, but it
may be applied to other directories or files. Because of this flexibility, it may be called again
within other microservices and not just as a single step in the workflow.

Microservice Steps:
1. Accept an Information Package as an input (such as a SIP validated by

`ValidateSubmissionPackage`).
2. Determine if the output of this microservice is already created or not in need of

update, and if so stop proceeding.
3. Iterate through all Content Information files within the .̀/content` subdirectory

(and optionally through the .̀/derivatives̀ subdirectory) and generate checksums
to document all such files.

Example: Creating a sha256 checksum manifest with hashdeep using relative links
hashdeep -c sha256 -rl ${CONTENTS _ DIRECTORY}

MakeDFXML
In addition to support the writing of simple checksum manifests that list the file name and
associated checksum, hashdeep can also produce DFXML files (Digital Forensics XML).
The advantage of a DFXML report over a checksum manifest is that the DFXML includes
file attributes, file sizes, file dates, and information about the environment in addition to
the filenames and checksums. Such contextual information can be very helpful to assessing
or resolving checksum mismatches at a later point.

Microservice Steps:
1. Accept an Information Package as an input (such as a SIP validated by

`ValidateSubmissionPackage`).
2. Determine if the output of this microservice is already created or not in need of

update, and if so stop proceeding.
3. Iterate through all Content Information files within the .̀/content` subdirectory

(and optionally through the .̀/derivatives̀ subdirectory) and generate DFXMLs to
document all such files.

Example: Creating a DFXML with md5 with hashdeep using relative links
hashdeep -c md5 -drl ${CONTENTS _ DIRECTORY}

MakeTechnicalMetadata
This microservice extracts values for technical metadata embedded within the Content
Information files. It can exist as a single microservice that generates a standardized se-
ries of metadata reports—for example, multiple logs (generated by multiple tools) for all
Content Information files. It can also exist as a set of smaller microservices that gener-
ate logs from only tool, which can then be selected or combined as needed based on the
Content Information’s file type or purpose.

Annie Schweikert & Dave Rice

66
iasa journal no 50 – August 2019

Microservice Steps:

1. Accept an Information Package as an input (such as a SIP validated by
`ValidateSubmissionPackage`).

2. Determine if the output of this microservice is already created or not in need of
update; if so, stop proceeding.

3. Iterate through all Content Information files within the .̀/content` subdirectory
(and optionally through the ̀ ./derivatives̀ subdirectory). Generate a technical meta-
data report to document all such files, using one or more reporting tools such as
`ffmpeg ,̀ `ffprobe ,̀ `mediaconch ,̀ `mediainfo ,̀ and `exiftool .̀

The technical metadata reported in this microservice may be used to make decisions with-
in other microservices. For instance, the FFmpeg command used in `MakeWebDerivative`
may be different depending on metadata such as the audio channel layout. Because FFmpeg
can act as both a reporting and a processing tool, it may be more consistent to instead use
`ffprobe` in the generation of technical metadata. (FFprobe and FFmpeg are derived from
the same source library.) If `mediainfo` and `ffmpeg` differ on an assessment of a file, using
FFprobe would avoid incorporating any processing logic into an FFmpeg command.

Example: Creating an XML with FFprobe
ffprobe ${INPUT _ FILE} -show _ format -show _ streams -show _ data
-show _ error -show _ versions -show _ chapters -noprivate -of xml=q=1:x=1
> ${TECHMD _ FFPROBE}

Example: Creating an XML with MediaInfo and MediaTrace data with MediaConch
mediaconch -mi -mt -fx ${INPUT _ FILE} | xml fo > ${TECHMD _ MEDIACONCH}

Example: Creating an XML to document the files and directories within a section of a
package with `tree`
tree -DaNXs --du --timefmt “%Y-%m-%dT%H:%M:%SZ” ${PACKAGE _ SECTION} >
${TREE _ XML}

3.4 Creating and Validating an Archival Information Package

In Section II, we looked at example Information Package structures, with a SIP represented
in Example 1 and an AIP represented in Example 3. In these examples, as in all successful
implementations of SIPs and AIPs, all data from the SIP (Example 1) is stored within the
AIP (Example 3) in a way that provides context to the role of each file. However, the AIP
contains many new pieces of information that were not part of the SIP, but are added to
support long-term storage and maintenance of the SIP’s content. The added data infers
that several workflows or programs (microservices) were applied to the content. There
are many routes that may be developed or established to get from the defined SIP of
Example 1 to the defined AIP of Example 3; the below microservices illustrate one route
to creating and validating the AIP.

PackageContent
This microservice accepts Content Information and Preservation Description Information
and organizes them into a subdirectory structure, in order to clarify the role of each piece
of data within the package.

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
67

Microservice Steps:

1. Gather or request any additional data required by the archive for the initial genera-
tion of an AIP; for example, logs created in the process of running microservices.

2. Verify that the file as submitted adheres to archival preservation standards, for
example checking that the audio codec, video codec, and important technical meta-
data values match the preservation file profile defined by the archive.

3. Create a unique Package Identifier based on (for example) the filename or media
identifier from the Preservation Description Information submission. Create a di-
rectory based on that identifier.

4. Create sub-directories ̀ ./content` and ̀ ./metadatà and file the Content Information
and Package Descriptive Information within those directories.

ValidateArchivalPackage
Archival Information Packages will require more extensive validation than those of
Submission Information Packages, considering the amount of Preservation Description
Information generated. During the growth of a digital archiving program, the tests and
checks within a validation procedure may be extended and expanded to cover more and
more specific checks. The list below presents some tests that such a microservice may
consider.

Microservice Steps:

1. Verify that checksums are documented for all files that need them, as defined by the
archive’s local policy for Archival Information Packages.

2. Verify that checksums are accurate to all files by regenerating the same checksums
with the same algorithm and comparing it to the ones stored; this may be accom-
plished by calling the ̀ MakeChecksums̀ microservice and comparing its output with
the previous `MakeChecksums̀ output.

3. Check to make sure that all anticipated microservices have properly run. This check
can be accomplished by using a Bash file test operator11 to check that all anticipated
output file and directories are present, or by using exit codes to evaluate the suc-
cess or failure of operations.

ValidateDisseminationPackage
It is efficient to generate derivative files for Dissemination Information Packages at the
same time as Archival Information Packages; these derivatives should also be checked for
conformance to local specifications.

1. Verify that the files generated by the microservices adhere to locally-set derivative
specifications. For instance, check if the output of `MakeWebDerivative` uses the
H.264 video codec and AAC audio codec as defined by local plicy.

2. Verify that checksums are accurate to all files by regenerating the same checksums
with the same algorithm and comparing it to the ones stored; this may be accom-
plished by calling the ̀ MakeChecksums̀ microservice and comparing its output with
the previous `MakeChecksums̀ output.

11	 See,	in	particular,	the	-f,	-s,	and	-d	tests	as	described	here:	https://www.tldp.org/LDP/abs/html/fto.html

Annie Schweikert & Dave Rice

68
iasa journal no 50 – August 2019

3.5 Creating Derivatives

Other microservices generate derivatives from Content Information files to have on hand
for quick access. In this case, derivatives are included within a DIP rather than an AIP, as
local conventions on access files can change over time and complicate the validation of the
AIP itself.

MakeWebDerivative
This microservice uses Content Information from the package to create a derivative using
FFmpeg for packaging in the DIP. A derivative created during the creation of the AIP can
then be stored for quicker access to the content, rather than requiring that a derivative be
created at the time of a request for access. In this microservice example, a derivative will
be created to deliver content on the Web.

Microservice Steps:

1. Accept an Information Package as an input (such as the output of ̀ PackageContent`).
2. Identify what data to use as a source in the creation of a derivative. In this case, the

source can be identified as the file within the .̀/content` subdirectory.
3. Identify if the anticipated output already exists. If so, stop proceeding.
4. Create a unique Package Identifier based on (for example) the filename or media

identifier from the Preservation Description Information submission. Create a di-
rectory based on that identifier, with something to signify the package’s status as a
DIP.

5. Create a new subdirectory (if none already exists) in the package to store the an-
ticipated derivative. In this example, the service directory is called `DIP/derivative/
web/ .̀

6. Create a new subdirectory (if none already exists) in the package to store the the
log associated with making the anticipated derivative, in this case `DIP/metadata/
logs/ .̀

7. Use FFmpeg with the source file from the AIP’s .̀/content` subdirectory to create a
web-optimized derivative in the `DIP/derivative/web/` directory.

8. Generate checksums for derivatives using `MakeChecksums̀ .
9. Log the FFmpeg process and other aspects of the microservice’s event into a log file

within `DIP/derivative/web .̀

Strategies for generating derivatives should negotiate the processing opportunities of the
archive, access systems to be deployed, and the potential needs of the communities po-
tentially served with this content. Currently, web-ready derivative profiles include H.264
video with AAC audio in an MP4 container (as implemented in the example), or VP9 video
with Opus audio in a WebM container.

Example: Creating a Web-ready derivative
ffmpeg -i ${CONTENT _ INPUT} -c:v libx264 -movflags faststart -pix _ fmt
yuv420p -crf 18 -c:a aac -ac 2 {WEB _ DERIVATIVE}.mp4

MakeEditDerivative
`MakeWebDerivative` is very similar to ̀ MakeEditDerivative ,̀ except that the process gen-
erates a derivative prepared for a different type of access, such as file transfer or editing.
Whereas `MakeWebDerivative` aims to generate a derivative well-prepared for use in
web streaming and access, this microservice run through the same steps but could use au-

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
69

diovisual encodings and container formats prepared for likely editors or production staff.

Microservice Steps:

1. Accept an Information Package as an input (such as the output of ̀ PackageContent`).
2. Identify what data to use as a source in the creation of a derivative. In this case, the

source can be identified as the file within the .̀/content` subdirectory.
3. Identify if the anticipated output already exists. If so, stop proceeding.
4. Create a unique Package Identifier based on (for example) the filename or media

identifier from the Preservation Description Information submission. Create a di-
rectory based on that identifier, with something to signify the package’s status as a
DIP.

5. Create a new subdirectory (if none already exists) in the package to store the an-
ticipated derivative. In this example, the service directory is called `DIP/derivative/
edit/ .̀

6. Create a new subdirectory (if none already exists) in the package to store the the
log associated with making the anticipated derivative, in this case `DIP/metadata/
logs/ .̀

7. Use FFmpeg with the source file from the AIP’s .̀/content` subdirectory to create a
web-optimized derivative in the `DIP/derivative/edit/` directory.

8. Generate checksums for derivatives using `MakeChecksums̀ .
9. Log the FFmpeg process and other aspects of the microservice’s event into a log file

within `DIP/derivative/edit .̀

Operations for generating files for editing use should consider the needs and systems of
those likely to request such derivatives. Additionally, the archive should consider whether
creating a derivative for editing use is necessary, as the Content Information files may be
appropriate to edit as-is.

Example: Creating an edit-ready derivative
ffmpeg -i ${CONTENT _ INPUT} -c:v prores _ ks -profile:v 3 -flags +ildct+ilme
-c:a pcm _ s16le {EDIT _ DERIVATIVE}.mov

3.6 Event Logging

The OAIS reference system requires that preservation events, or the actions and out-
comes of microservices, be logged and included as a component of the AIP’s Preservation
Description Information. Such logs provide details regarding preservation events and can
be particularly helpful when the processing of AIPs requires auditing. For example, if a mi-
croservice under a particular version and/or scenario is later discovered to be flawed, hav-
ing records of what versions of what microservices were run on what packages with what
options can help the archive better react to bugs as they are discovered and corrected.

The Preservation Metadata: Implementation Strategies (PREMIS) metadata standard de-
fines a structure for event logging and documents the following concepts:

Annie Schweikert & Dave Rice

70
iasa journal no 50 – August 2019

PREMIS Event Element Context in microservice logging
eventIdentifier A unique identifier to refer to the event.

eventType A general classification of the sort of event. See, for
example, the vocabulary at http://id.loc.gov/vocabu-
lary/preservation/eventType.html

eventDateTime The point of time or range of time in which the
event occurs.

eventDetailInformation Information about the event, such as the name of the
microservice.

eventOutcomeInformation Details about the result of the microservice, includ-
ing whether the event completed successfully and
any logged data from the process.

linkingAgentIdentifier Linking agents are agents that had an effect on the
resulting AIP, and can include the name of the opera-
tor, the name and version of the involves software,
and/or the name and version of the microservice.

linkingObjectIdentifier Identification of the objects processed and/or cre-
ated by the microservice.

Such data could be pushed by each microservice to a component of the AIP, such as a
database record or log file within a package. The goal of such logging is to ensure that
the contents of the AIP are independently understandable. To this end, it is important to
document what parts of the AIP were part of the SIP, what parts were generated from the
SIP, and by what processes the information was generated.

The principles of preservation event logging neatly dovetail with microservices that gener-
ate technical metadata or validate packages. For example, a fixity check is not just evidence
of a microservice having completed successfully, but its execution and success or failure
also may be stored as an event and eventOutcome within the PREMIS dictionary.12 For
such events,

Many microservices for audiovisual content use FFmpeg for actions such as derivative-
creation, validation, and frame checksums. FFmpeg supports a `-report` option or an
`FFREPORT` environment variable13 which is used to log the console output of FFmpeg
into a log file. Other command-line utilities can be logged by piping the standard er-
ror or standard output to a file. If events are logged to text files, then the design of
the AIP should document practices for naming log files, for example ${microservice-
name}_${microservice-version}_${datetime}.txt.

12	 See	page	258	of	the	current	PREMIS	Data	Dictionary	for	more	detail,	https://www.loc.gov/standards/premis/v3/
premis-3-0-final.pdf

13	 See	-report	in	http://ffmpeg.org/ffmpeg-all.html

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
71

4. Building an Ingest Script

4.1 Microservice Commonality

The microservice examples listed above demonstrate that once a packaging definition is
established by an archive, the archive’s microservices can share substantial commonali-
ties. For instance, `MakeWebDerivative` and `MakeEditDerivative` are nearly identical in
that they both check if the microservice is eligible to proceed, log their procedures, and
file their output. Both `MakeTechnicalMetadatà and `MakeChecksums̀ operate similarly,
except for the type of tool used (and the resulting report stored as part of the AIP).
And `ValidateArchivalPackage` and `ValidateDisseminationPackage` both take the step of
verifying that the files generated by the microservices adhere to locally-set file specifica-
tions—only the profiles themselves are different.

Commonalities can be exploited in development by creating common functions or code
snippets that can be shared across a set of microservices. These common functions can
be turned into a local microservice library. For example, in the microservice library in use
at CUNY TV, common functions are defined in a script resource called `mmfunctions.̀
Functions are called from this central resource by each microservice as needed.14 Defining
commonalities across microservices in a single place not only saves lines of code, but
means that updates to a common function only need to happen in one place. For example,
if multiple microservices report information from a certain field in a database, the database
pull can be defined in a single central function that is called by each microservice. If the
archive eventually changes the location of this database or the name of the field, this in-
formation can be edited in that central function, allowing each microservice to be updated
with a single edit.

Successful commonalities structures also depend upon shared parameters and common
libraries. A set of microservices built up with consideration of local standards will natu-
rally refer to similar settings and structures. Attention should be paid to selecting tools
that are compatible with each other. For example, using MediaInfo to report metadata
in `MakeTechnicalMetadatà means other tools that rely on the MediaInfo library—for
example, MediaConch—will be easy to integrate and can potentially provide many more
points of connection.

4.2 Linking Microservices Together
In some cases, one or more microservices may be combined into one, larger microservice,
in order to create a combination of tasks that always take place together. This choice takes
advantage of the wide range of tools that can perform Ingest tasks, including some that can
accomplish the tasks of multiple microservices. For example, the `baginplace` function of
BagIt combines the goals and results of the PackageContent and MakeChecksums micros-
ervices, as defined above, but at the same time. Combining microservices in this matter
can be useful if it becomes clear that the two microservices always take place together.
In other cases, retaining separation at a granular level between microservices integrates
them better into workflows.

Example End-to-End Microservice Architecture
An example chain of microservices using the templates put forth in this paper might look
like the following:

14 https://github.com/mediamicroservices/mm/blob/master/mmfunctions

Annie Schweikert & Dave Rice

72
iasa journal no 50 – August 2019

1. Submission (creation and validation of SIP):
a. Initial submission of Content Information and Preservation Description

Information
b. ValidateSubmissionPackage

i. Call MakeChecksums as part of validation procedure.
ii. Conditional continuation if package passes this microservice.

2. Ingest (creation and validation of AIP):
a. MakeDFXML
b. MakeTechnicalMetadata
c. PackageContent
d. ValidateArchivalPackage

i. Call MakeChecksums as part of validation procedure.
ii. Conditional continuation if package passes this microservice.

3. Access (creation and validation of DIP):
a. MakeWebDerivative

i. Call MakeChecksums as part of derivative creation procedure.
b. MakeEditDerivative

i. Call MakeChecksums as part of derivative creation procedure.
c. ValidateDisseminationPackage

i. Call MakeChecksums as part of validation procedure.
ii. Conditional confirmation if package passes this microservice.

Packages Generated by Example End-to-End Microservice Architecture
At the end of this chain of microservices, the following packages will have been created.
The italicized content indicates files or information generated by microservices. Content
without italics represents information that must be supplied by the creator or archivist.

Submission Information Package
■■ Content Information

■� ${CONTENT} (1)
■■ Preservation Description Information

■� [checksum file] (1)
■� [web-form-record] (1)

Archival Information Package
■■ Content Information

■� Content Data Object
■� ${CONTENT} (1)

■� Representation Information
■� [extracted technical metadata] (+)

■■ Preservation Description Information
■� Provenance Information

■� [log files from microservice events] (+)
■� Context Information

■� [database record of relationships with other database
materials] (+)

■� Reference Information
■� [web-form-record] (1)
■� [database record of descriptive metadata] (1)
■� [database record of access metadata] (1)

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
73

■� Fixity Information
■� [checksum file] (1)
■� [DFXML file] (1)

Dissemination Information Package
■■ Content Information

■� /derivatives/web/${CONTENT}.mp4 (+)
■� /derivatives/edit/${CONTENT}.mov (+)

■■ Preservation Description Information
■� [database record of descriptive metadata] (1)
■� [log files from microservice events] (+)

4.3 Collaboration with Other Archives

These examples of microservice commonality and interconnectedness demonstrate how
complex a microservice-based archival design can become. An archive might rightfully find
that maintaining and updating code is too large a task to assign alongside archivists’ day-to-
day work. Microservice-based architecture is often more successful when employing col-
laboration amongst archival communities and open source approaches, wherein multiple
stakeholders can contribute to a common goal and share responsibility for maintenance, as
well as the advantages of additions and updates. Many examples of open, archival microser-
vice documentation may be found at https://github.com/amiaopensource/open-workflows.

5. Advanced Considerations for Audiovisual Files and Derivatives

The example FFmpeg commands presented in `MakeWebDerivativè and
`MakeEditDerivativè consist of a one-line command to convert a video file into a
derivative. However, in some environments a more complex approach may be required.
For instance, in broadcast environments, a single presentation may be digitized from two
videotapes to two files; an original video file may include color bars and black frames that
aren’t needed for inclusion within some types of access files; or a video file might include
multiple audio tracks that may need to be down-mixed or selectively picked for inclusion
with an access file. These complications can either be employed as concatenation or trim-
ming microservices, or—if the archive determines they should be applied consistently in
tandem across the archive’s materials—may still represent a single cohesive microservice.

When dealing with multiple timelines, it is important to make the relationship explicit be-
tween the original file and its edited timeline. Concatenation and trimming are a preserva-
tion event15 and its occurrence should be noted in a log generated by the microservice, or
inserted into a structured metadata standard such as METS. If employing these methods
on the original object, it is also important to generate a new checksum for later package
validation and fixity checks.

5.1 Temporal Selection

Often videotapes are digitized in a manner that includes video content that is supported
by colorbars, informational slates, black frames, countdown, static noise, or other visual
information that surrounds a program. With videotapes, generally such supporting infor-

15	 For	example,	they	may	be	logged	as	a	“modification”	according	to	the	PREMIS	vocabulary,	with	more	information	
stored	as	a	PREMIS	Event	Detail.

Annie Schweikert & Dave Rice

74
iasa journal no 50 – August 2019

mation is recorded into a tape to contextualize a presentation but is not intended to be a
part of the presentation itself. For instance, the digitization of a videotape may result in a
34 minute preservation file that may contain the following segments:

■■ 00:00 - 01:00: Color bars
■■ 01:00 - 01:30: Informational slate
■■ 01:30 - 01:40: Countdown
■■ 01:40 - 31:40: A presentation
■■ 31:40 - 32:40: Black frames
■■ 32:40 - 34:00: Static noise recorded until the digital recording was stopped.

For some forms of access it may be appropriate to create derivatives that represent the
full timeline of the digitization; however, in other cases, that is not how the presentation is
intended to be shown. FFmpeg has several options that can be used to support temporal
selection so that an output derivative represents only a range of time of the input.

To fit temporal selection into the microservice scenario presented above, the
`PackageContents̀ could request or identify the starting and the ending time of the in-
tended presentation within the timeline of the preservation file. With the 34 minute video
file depicted above, we may want an access derivative to represent the time range from
01:40 - 31:40 to mimic the intended presentation that the videotape would have been used
to create. If `PackageContents̀ can store intended start and end times within the package,
then subsequently `MakeWebDerivative` could be written to check for the presence of
starting and ending times and, if so, then apply them while constructing an FFmpeg com-
mand.

Example: `MakeWebDerivativè with trimming at head and tail
ffmpeg -ss ${STARTING _ TIME} -i ${CONTENT _ INPUT} -c:v libx264 -mov-
flags faststart -pix _ fmt yuv420p -crf 18 -c:a aac -ac 2 -to ${ENDING _
TIME} {WEB _ DERIVATIVE}.mp4

5.2 Multi-file Input
The examples above presume that the Content Information of each package is a single
video file. However, more complex video representations may need to be supported. For
example, a camera may produce a continuous recording through the creation of multiple
concurrent files, or a single presentation may be digitized from two videotapes to two
files. It may be desirable to concatenate multiple preservation-level files into a single, mas-
ter preservation file, or a single derivative.

To support such cases, the `PackageContents̀ microservice may be extended to support
the ingest of multiple files into a single package. FFmpeg documents several methods to
support concatenating multiple files into a single output.16 If the technical characteristics of
the package’s content files are similar (same frame size, codecs, etc.) then FFmpeg’s concat
demuxer is recommended.17 To use this tool, a text file should be generated listing the
input files in order, with optional start and end times for each file. If this text file, named
‘package_input.txt’, lists:

file ‘INPUT _ FILE _ 1’

16	 See	“Concatenate”	documentation	in	the	FFmpeg	wiki,	at	https://trac.ffmpeg.org/wiki/Concatenate
17	 See	“Concat	Demuxer”	in	the	FFmpeg	documentation,	at	http://ffmpeg.org/ffmpeg-formats.html#concat-1

Microservices in Audiovisual Archives

iasa journal no 50 – August 2019
75

file ‘INPUT _ FILE _ 2’
file ‘INPUT _ FILE _ 3’

Then an FFmpeg command can be extended to join together multiple files by referencing
that text file as the input, as in the examples below.

Example: Concatenating preservation files
In this example, the preservation files to be concatenated are already in the proper pres-
ervation file format, and need only be joined.
ffmpeg -f concat -i package _ input.txt ${CONTENT _ CONCATENATED _ ID}

Example: Concatenating files in the production of a Web derivative
In this example, the preservation files are already in the proper preservation file format,
and need only be joined.
ffmpeg -f concat -i package _ input.txt -c:v libx264 -movflags faststart
-pix _ fmt yuv420p -crf 18 -c:a aac -ac 2 {WEB _ DERIVATIVE}.mp4

6. Conclusions

By defining a consistent and OAIS-inspired packaging structure within an archive, a mi-
croservice environment can be developed and expanded as the archive integrates services
and functions. Packaging techniques should make a clear distinction between the object or
objects that are the focus of preservation and any derivative files or metadata that support
access and knowledge about those objects. Any microservice processing with the AIP as an
input must be able to understand the AIP structure sufficiently to determine what specific
files within it should be used in the microservice’s work.

Many archives have been developing and sharing microservices amongst each other, as can
be seen in places such as https://github.com/amiaopensource/open-workflows. Currently
implementations of AIP structure do not have a standardized manner of expressing that
structure, as in similar to a way in which an XML Schema can document an XML expression
and be used to assess its validity. On the other hand, the development of more methods to
transform AIPs from one archive’s AIP implementation to another, or the development of
microservices that are more easily shared amongst archives, are likely outcomes as archives
integrate more collaboration and sharing in their own microservice implementations.

While monolithic systems for management of digital archives are still considered to be
crucial requirements within many corners of the field, archives generally do not aspire for
such systems to maintain the same level of permanence that is expected for the media and
metadata of archival collection. Over time, as monoliths become obsolete or are replaced
with another monolith, the migration of the media and metadata from one monolith to
another often becomes a complex, expensive, and/or risky pain point in the timeline of
archival management. The use of microservice architectures within audiovisual archives
puts the media and metadata itself rather than the system at the center of archival manage-
ment. Individual microservice components may be improved or replaced on an individual
basis in a manner that facilitate a more natural evolution of an archive’s gradual expanse in
services, functions, and adherence to standards.

This work is published under a Creative Commons Attribution-ShareAlike 4.0 License18

18 https://creativecommons.org/licenses/by-sa/4.0/

Annie Schweikert & Dave Rice

